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[1] Synthetic satellite observations (or retrievals) of terrestrial water storage (TWS) in the
Mackenzie River basin located in northwestern Canada were assimilated into the Catchment
land surface model to evaluate the impact (i) assimilating TWS retrievals at subbasin (�105

km2) or basin (�106 km2) scales and (ii) incorrectly specifying the model error correlation
length that is used for the perturbation of model forcing and prognostic variables in the
ensemble-based assimilation system. Specifically, a total of 16 experiments were conducted
over a 9 year study period using different combinations of the spatial scale of the
assimilated TWS retrievals and the horizontal model error correlation length. In general,
assimilation of the TWS retrievals at the subbasin scale (�2.7 � 105 km2 on average)
yielded the best agreement relative to the synthetic truth. Greater improvement in TWS and
snow water equivalent, in general, was witnessed as the (designed) horizontal model error
correlation length increased. Conversely, subsurface soil water, evaporation, and runoff
estimates typically improved (or remained unchanged) as the horizontal model error
correlation length decreased. As the scale of the assimilated TWS retrieval decreased, more
mass was effectively transferred from snow water equivalent into the subsurface, thereby
dampening the hydrologic runoff response in the study area and correcting for improper
model physics related to the runoff routing scheme. In general, TWS retrievals should be
assimilated at the smallest spatial scale for which the observation errors can be considered
uncorrelated while the specification of the horizontal error correlation length scale is of
secondary importance.
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1. Introduction and Background

[2] Space-based gravimetric retrievals of terrestrial
water storage (TWS) changes provide a unique capability
to better diagnose the Earth’s hydrologic cycle [Yeh et al.,
2006; Rodell et al., 2009; Syed et al., 2009; Strassberg
et al., 2009; Tang et al., 2010; Wang et al., 2011]. Gravi-
metric measurements remotely sense TWS changes via
detection of gravitational anomalies associated with the
aggregation (or dissipation) of mass near the Earth’s sur-
face [Wahr et al., 2004; Tapley et al., 2004]. The ability to
‘‘feel’’ rather than ‘‘see’’ terrestrial water throughout the
water column enables an assessment of TWS that micro-
wave, infrared, or visible spectrum remote sensing meas-
urements cannot provide. Despite some inherent
advantages, however, space-based gravimetric retrievals

are limited by their coarse (�150,000 km2) spatial and
(approximately monthly) temporal resolution. In addition,
gravimetric retrievals lack the vertical resolution necessary
to deduce whether the measured mass is associated with
snow on the surface, soil moisture in the subsurface, or
with any other hydrologic storage component that contrib-
utes to TWS.

[3] Recent studies merged space-based gravimetric
retrievals with land surface models in order to improve
hydrologic state estimates via application of a statistical
conditioning procedure [Zaitchik et al., 2008; Su et al.,
2010; Forman et al., 2012; Houborg et al., 2012; Li et al.,
2012]. These studies employed retrievals from the gravity
recovery and climate experiment (GRACE) within a data
assimilation (DA) framework. While these studies demon-
strated the added value associated with utilizing GRACE
TWS retrievals as part of a DA procedure, the conclusions
made were limited by the amount of available ground-
based observations for use during validation. For example,
Su et al. [2010] and Forman et al. [2012] showed that snow
water equivalent (SWE) estimates could be improved
across portions of North America, but neither study could
draw definitive conclusions regarding groundwater or soil
moisture due to the sparsity of available in situ observa-
tions. Analogously, Zaitchik et al. [2008] and Houborg
et al. [2012] discussed groundwater and soil moisture
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estimates in portions of the continental United States, but
due to the sparsity of in situ observations in these areas,
point-scale observations that are, in general, only represen-
tative of an area covering a few km2 (or less) were often
compared to model-derived estimates that covered thou-
sands of km2 (or more).

[4] Additionally, none of these previous studies investi-
gated in detail the impacts of the horizontal model error
correlation length or the spatial averaging scale at which
the GRACE TWS retrievals were assimilated. The spatial
averaging scale was selected somewhat subjectively with-
out any particular guidance on how best to assimilate TWS
retrievals as a function of spatial scale. Most TWS retrieval
products result from an amalgam of GRACE overpasses
[Wahr et al., 2004] and are typically provided on a 1� � 1�

grid (�104 km2). At the 1� � 1� scale, however, TWS
retrievals contain significant spatial error correlations asso-
ciated with truncation [Chambers, 2006] and leakage
[Landerer and Swenson, 2012] errors. Conversely, the spa-
tial scale that is sufficiently resolved by GRACE (i.e., scale
at which spatial error correlations are irrelevant) is
�105 km2 [Rowlands et al., 2005; Famiglietti and Rodell,
2013]. Since almost all land data assimilation systems
(including the system used here) assume that observation
errors are uncorrelated, assimilation of TWS retrievals on a
1� � 1� grid is nontrivial and generally avoided in order to
reduce computing infrastructure requirements. Therefore, 1�

� 1� grid retrievals are often aggregated prior to data assimi-
lation to a spatial scale at which spatial error correlations are
negligible. For example, Zaitchik et al. [2008] assimilated
GRACE TWS retrievals at scales greater than �105 km2.

[5] While it may be argued that retrievals should be
assimilated at the subbasin (�105 km2) scale rather than at
the basin (�106 km2) scale, the presence of nonlinearities
in the system does not make this immediately obvious. Fur-
thermore, the DA system requires input model error spatial
correlation scales that are difficult to specify. This study is
designed to provide guidance to the land data assimilation
community on the treatment of spatial error correlations in
TWS retrievals and in the modeling system in the context
of data assimilation. The performance goal is to yield the
best possible estimates at the model (�103 km2) scale using
GRACE TWS retrievals at a monthly, subbasin scale with
the caveat that GRACE TWS retrievals can only add infor-
mation at a monthly, subbasin scale or greater (that is,
�105 km2), consistent with their temporal and spatial reso-
lution. Science questions addressed here include:

[6] 1. Does the spatial scale of the GRACE TWS retriev-
als impact DA performance at the fine-scale model resolu-
tion? Is there a preferred spatial scale to which TWS
retrievals should be aggregated prior to assimilation?

[7] 2. Does the input horizontal model error correlation
scale impact the ability of the DA routine to transfer infor-
mation from the coarse-scale (�105 km2) retrievals to the
fine-scale (�103 km2) model space? If so, what is the most
applicable model error correlation length scale that should
be used?

[8] 3. Can a DA procedure effectively add vertical and
horizontal resolution to TWS retrievals via application of a
fine-scale prognostic model?

[9] Section 2 outlines the methodology and study
domain used here, including the setup and validation of the

synthetic twin experiment. Section 3 highlights the results
from the open-loop and assimilation experiments, including
a discussion of the relevant components of the hydrologic
cycle. Section 4 discusses the conclusions of the study, pro-
vides answers to the science questions listed above, and
considers implications for future studies that assimilate
gravimetric TWS retrievals.

2. Methodology

[10] The following describes the setup for the synthetic
twin experiment used in this study. Only the essential
details of the synthetic twin experiment are discussed here.
Further information regarding the assimilation system can
be found in section 3d of Zaitchik et al. [2008] as well as in
Forman et al. [2012].

2.1. Data Assimilation Framework

[11] The DA framework employs an ensemble-based
smoothing approach that consists of a two-step process as
illustrated in Figure 1. During Step 1, the nonlinear, prog-
nostic land surface model propagates the model states for-
ward in time from 1 month to the next using an ensemble
of realizations with prescribed model errors (see section
2.3, for more details). Assumed model errors are repre-
sented by perturbations that are applied to both model
states and forcings. The prior model states are then updated
using synthetic retrievals available for a given time period
of interest (Step 2). A linear update equation is employed
to update the model states using a weighting factor based
on the uncertainty in the prior states and the retrievals. The
increments obtained from the update are then added to the
model states during a second model integration for this
month. As illustrated in the right-hand side of Figure 1, the
second round of model integration begins anew. During
this second integration, the monthly analysis increments
are divided by the number of days within the given month
and then added on a daily basis. The monthly resolution of
the TWS retrievals is what ultimately dictates the calcula-
tion of the analysis increments at the monthly timescale.
Our approach to disaggregate each increment evenly across
the days of the month reflects this underlying resolution
because the resulting application of the analysis increments
at the daily is consistent with the original, monthly aver-
aged TWS changes observed by the GRACE satellite sys-
tem. After the second round of model integration, the
update procedure is repeated for the next month using the
next set of available retrievals. The application of the anal-
ysis increments in the ensemble smoother formulation used
here differs from the more traditional ensemble Kalman
smoother that was discussed in Dunne and Entekhabi
[2005]. These differences are discussed in detail in section
3d of Zaitchik et al. [2008].

2.2. Study Domain

[12] The study domain is the Mackenzie River basin
(MRB) located in northwestern Canada (Figure 2). As a
whole, MRB is �1.8 � 106 km2 in drainage area (�1.6 �
106 km2 for land areas only; see Table 1) with the main
branch of the Mackenzie River running from the highlands
in the southwestern corner of the domain northward toward
the Arctic Ocean. The snow classification scheme of Sturm
et al. [1995] suggests that MRB snow is dominated by
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taiga-type snow with smaller areas of tundra and alpine-
type snow found in the northwest and southern regions,
respectively (not shown).

[13] Figure 2 shows the MRB discretized into six (6)
subbasins for which details are provided in Table 1. Discre-
tization was based on topographic control and adhered to
the topology of the river network. The smallest subbasin,
Peel, is 200,000 km2, which is larger than the minimum
area of roughly 150,000 km2 that can be resolved by
GRACE at midlatitudes [Rowlands et al., 2005; Swenson
et al., 2006]. Synthetic retrieval preprocessing included a
monthly averaged TWS estimate for each of these subba-
sins, which is discussed in more detail in section 2.4.1.

2.3. Prognostic Land Surface Model

[14] The prognostic model used in this application is the
Catchment land surface model (Catchment) developed by
Koster et al. [2000]. Individual watersheds in the Catch-
ment model are discretized into ‘‘tiles’’ where the average
size of a tile in the study domain is approximately 3000
km2. The Catchment model employs a catchment deficit
prognostic variable that accounts for shallow groundwater

and soil moisture. The model also accounts for nonequili-
brium conditions in the unsaturated zone and explicitly
models subtile scale soil moisture variability and its effect
on hydrological processes such as runoff and evaporation.
The inclusion of a three-layer snow model [Stieglitz et al.,
2001] provides additional capability in the estimation of
TWS in areas where snow is a significant contributor to the
hydrologic cycle. The observation operator, H, maps the
model states into retrieval space via spatiotemporal aggre-
gation of the model estimates in horizontal ‘‘tile’’ space
(subdiurnal ; 103 km2) and vertical integration of the uncon-
fined water table, root zone soil moisture, surface soil mois-
ture, SWE, and vegetative canopy interception model states
[Forman et al., 2012] into subbasin or basin scale TWS
estimates that range from �105 to �106 km2. Even though
riverine and lake storage can be a significant contributor to

Figure 1. Simplified flowchart of ensemble-based
smoothing application reproduced from Forman et al.
[2012].

Figure 2. Map of Mackenzie River basin including the
delineation of six (6) subbasins according to river network
topology.

Table 1. Subbasin Delineation and Assimilated Retrieval Discre-
tization for the MRB (Land Areas Only) Along With Applied
GRACE TWS Retrieval Error Covariance, R

Subbasin Name Land Area (105 km) R (mm2)

1 Assimilated Retrieval
Entire Mackenzie 16.1 82

2 Assimilated Retrievals
Slaveþ PeaceþAthabasca 9.3 122

LiardþBearþPeel 6.8 122

4 Assimilated Retrievals
Liard 2.8 202

PeaceþAthabasca 5.7 142

Slave 3.6 202

BearþPeel 4.1 142

6 Assimilated Retrievals
Liard 2.8 202

Peace 3.2 202

Athabasca 2.6 202

Slave 3.6 202

Bear 2.1 202

Peel 2.0 202
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TWS, the Catchment model does not currently account for
storage changes within surface water impoundments. Sur-
face meteorological forcing fields used as boundary condi-
tions for Catchment are discussed in detail in sections 2.4.1
and 2.4.2.

[15] Model spin-up and initialization consisted of a two-
step approach. The first step involved a five-time repeat of
a 4 year (i.e., 1 May 2001 to 1 May 2005) cycle for a single
replicate without model perturbations in order to yield a cli-
matologically reasonable estimate of TWS on 1 May 2001.
The second step involved running the model as an open-
loop (OL) ensemble (see section 2.4.2, for discussion of
model perturbations) from 1 May 2001 to 1 September
2001 in order to produce an adequate amount of uncertainty
(spread) within the OL ensemble and to spin up the cross
correlations between different state variables. From 1 Sep-
tember 2001 to 1 September 2010, the model was run in ei-
ther OL mode or DA mode. Finally, an ensemble size of 16
was selected based on the convergence of the TWS stand-
ard deviation of the prior ensemble [Forman et al., 2012].

2.4. Synthetic Twin Experiment

[16] The twin experiment started with a model integra-
tion that served as the ‘‘truth’’ and effectively represents
nature. This simulation served as the basis for synthetic
truth estimates of relevant hydrologic states and fluxes as
well as for the generation of noisy synthetic TWS retrievals
used during assimilation (section 2.4.1). ‘‘Designed’’ errors
were then imposed in the modeling system by replacing the
forcing data set used in the synthetic truth simulation with
an alternative forcing data set (see discussion in section
2.4.2). ‘‘Assumed’’ errors were subsequently generated via
random perturbations about the forcing and prognostic vari-
ables, which were intended to represent the ‘‘designed’’
errors in the modeling and assimilation system (see discus-
sion in section 2.4.2). Ensemble open-loop (OL) simula-
tions were conducted without the assimilation of synthetic
TWS retrievals and subsequently compared to ensemble
DA simulations where synthetic TWS retrievals were
employed. A schematic for the conceptual framework of
this synthetic twin experiment is provided in Figure 3.
2.4.1. Synthetic Truth and Synthetic Retrievals

[17] Generation of the synthetic truth involved a single
replicate simulation by Catchment. The Goddard Earth
Observing System Version 5.2.0 Modern-era retrospective
analysis for research and applications (MERRA)
[Rienecker et al., 2011] product was used to force the land

surface model, which is provided at an hourly temporal re-
solution and a 1/2� � 2/3� (latitude/longitude) spatial reso-
lution. Hydrologic states (i.e., groundwater, soil moisture,
and SWE) and fluxes (i.e., runoff and evaporation) esti-
mated from the synthetic truth simulation were used during
the validation activities to assess DA performance, which is
discussed in more detail in sections 2.4.2 and 2.4.3.

[18] The synthetic truth simulation was also used to gen-
erate the synthetic TWS retrievals for application within
the DA routine. Generation of these retrievals involved a
two-step process: (1) truth-derived time series of TWS
were computed using the linear observation operator, H,
described in section 2.3, and (2) the TWS time series were
then corrupted with a prescribed amount of zero-mean,
additive Gaussian noise that is representative of TWS re-
trieval error. It is assumed that the monthly averaged TWS
retrieval errors are temporally uncorrelated [Zaitchik et al.,
2008; Su et al., 2010; Forman et al., 2012] and that the re-
trieval errors are horizontally uncorrelated for all scales of
assimilated retrieval discretization used in this study. Esti-
mated horizontal error correlations were computed as
� bi; bj

� �
¼ exp �d bi; bj

� �
=�o;ret

� �
where d(bi, bj) is the

distance between points bi and bj and �o,ret is the retrieval
error correlation length scale. The exponential decorrela-
tion function is based on recommendations found on the
NASA Tellus website at http://gracetellus.jpl.nasa.gov/
data/gracemonthlymassgridsland/. Assuming a retrieval
error correlation length scale of �o,ret¼ 300 km and the
measured distances between the centroids of the six subba-
sins listed in Table 1, we find that spatial error correlations
between TWS retrievals for neighboring subbasins are less
than 0.15.

[19] Most TWS retrieval products are provided on a dis-
cretized grid that must be aggregated up to the Mackenzie
River basin as a whole or to one of its subbasins prior to
utilization by the DA framework. As TWS retrievals are
aggregated, the accuracy of the assimilated retrievals gen-
erally improves. In other words, TWS retrievals are a bal-
ance between accuracy and spatial resolution [Landerer
and Swenson, 2012]. Assuming that retrieval errors are spa-
tially uncorrelated at the finest subbasin scale discretization
(Table 1) and that the subbasins are approximately equal in
area, the error variance of an aggregated, coarse-scale re-
trieval is:

�2
c ¼

1

B2

X
b2B

�2
f ;b; ð1Þ

Figure 3. Conceptual framework for the synthetic twin experiment, including forcings, land surface
model (LSM), synthetic TWS retrieval generation, and synthetic TWS retrieval assimilation.
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where �2
c and �2

f are the retrieval error variances at the
coarse and fine scale, respectively, and B is the total num-
ber of fine-scale (subbasin) retrievals aggregated into the
coarser scale retrieval. The increase in error variance with
decreasing spatial scale does not mean TWS retrievals con-
tain less information, per se, but rather results from the
aggregation via equation (1). If we assume the retrieval
error variance for each of the finest scale subbasins (Table
1) is R¼ 202 mm2, which is identical to the retrieval error
variance used in Zaitchik et al. [2008] and Su et al. [2010],
then the right-most column in Table 1 lists the retrieval
error variance applied as a function of retrieval scale.

[20] While it may be argued that retrievals should be
assimilated at the subbasin (�105 km2) scale rather than at
the basin (�106 km2) scale, the presence of nonlinearities
in the system does not make this immediately obvious. The
analysis error variance is guaranteed to decrease as the spa-
tial scale of the assimilated retrievals decreases only if the
dynamic model is linear, the errors are Gaussian, the errors
are mutually independent, and a number of other con-
straints are met. However, these assumptions are rarely sat-
isfied in hydrologic data assimilation. It is therefore not
clear at which scale the TWS retrievals should be assimi-
lated, which makes the guidance provided in this manu-
script valuable.
2.4.2. Data Assimilation Experimental Setup

[21] As mentioned previously, designed error in the
modeling system is imposed through the use of imperfect
forcing fields from the global land data assimilation system
(GLDAS) [Rodell et al., 2004] as utilized in the heritage
NASA Global Modeling and Assimilation Office seasonal
forecasting system 3 hourly temporal and 2.0� � 2.5� (lati-
tude/longitude) spatial resolution. Significant climatologi-
cal (9 year) differences were found for precipitation and
downwelling shortwave radiation between the GLDAS and
MERRA forcing data sets within each of the six individual
subbasins. Therefore, a bias correction strategy was
employed such that the GLDAS precipitation and down-
welling shortwave radiation were rescaled to match
corresponding climatological values from MERRA. Clima-
tological differences in downwelling longwave radiation
were negligible (i.e., �0.5% or less) hence no longwave
bias correction strategy was deemed necessary.

[22] Since each of the six subbasins was bias corrected
individually, aggregation of the individual subbasins will
also be bias corrected by construct. However, even though
the total amount of precipitation or shortwave radiation that
impacts a given subbasin is identical between MERRA and
GLDAS as a result of the bias correction strategy, signifi-
cant differences in seasonality, synoptic scale variability,
and flux intensity still exist. The nonlinear hydrologic
response associated with differences in precipitation and
shortwave radiation timing and intensity results in signifi-
cant differences in subbasin TWS. Remaining differences
in TWS between the synthetic truth and the OL simulations
should ideally be mitigated via assimilation of the synthetic
TWS retrievals.

[23] Synthetic TWS retrievals are assimilated into en-
semble model integrations. For the ensemble integrations,
perturbations to select model states and forcings were pre-
scribed to represent assumed model errors. Both multiplica-
tive and additive perturbations were specified as listed in

Table 2. Model state perturbations were applied at each
model time step (i.e., every 20 min) and model forcing per-
turbations were applied at each forcing time step (i.e., ev-
ery 3 h). Temporal correlations were imposed using a first-
order auto-regressive model within the perturbed fields as
discussed in Reichle et al. [2008]. Horizontal model error
correlation lengths, �, were defined for different ensemble
integrations from the set �¼ {1�, 2�, 3�, 4�}. The value of
� represents the e-folding distance given an exponential
horizontal error model. The set � bounds the ‘‘true’’ design
error correlation length for TWS (error computed as
GLDAS minus MERRA), which is �o � 3.0� in the MRB
as estimated from computed variograms that reached a
near-asymptotic value less than 1/e but greater than zero
[Mela and Louie, 2001; Forman and Margulis, 2010]. It is
therefore reasonable to expect a priori that the assimilation
will perform best when � � 3� since the model representa-
tion of spatial error correlations would most closely match
those of the ‘‘true’’ design errors. In addition, values of
�> 4� were examined, but are excluded from discussion
here because these results provided relatively little insight
beyond those already presented in set �.

[24] For the computation of the analysis increments dur-
ing the ensemble update step, spurious long-range error
correlations were suppressed within the background (sam-
ple) error covariance terms via element-wise multiplication
of a compact support function as outlined in Gaspari and
Cohn [1999]. The methods of Gaspari and Cohn [1999]
impose an error covariance localization. It is worth stating
explicitly that the compact support function is only used
during computation of the analysis increments and is not
applied during generation of the forcing and prognostic
variable perturbations. The isotropic, compact support scale
was set to 2.5� such that the analysis at a given location is
only impacted by retrievals within a radius of 2.5�. In other
words, correlated errors greater than 2.5 times the e-folding
distance are suppressed. Cross correlations between forcing
perturbations were accounted for according to Reichle
et al. [2007].

[25] A total of 16 DA experiments were conducted. This
corresponds to the permutation of horizontal model error
correlation lengths, �¼ {1�, 2�, 3�, 4�}, with the set of
assimilated retrieval discretization, ARD¼ {1,2,4,6}. ARD
is representative of the assimilated retrieval scale as high-
lighted in Table 1.

Table 2. Parameters for Perturbations to Meteorological Forcing
Inputs and Model Prognostic Variablesa

Perturbation Type
Standard
Deviation Units AR(1) (day)

Precipitation M 0.5 3
Shortwave radiation M 0.5 3
Longwave radiation A 50 W m�2 3
Snow water equivalentb M 0.0004 1
Catchment deficit A 0.05 mm 1
Surface excess A 0.02 mm 1

aThe horizontal error correlation length scale, �, is included in the ex-
perimental design, but is omitted from the table.

bPerturbations made to all three (3) snow layers; M¼Multiplicative;
A¼Additive; AR(1)¼ first-order auto-regressive temporal correlation.
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2.4.3. Validation Approach
[26] Validation included the computation of several dif-

ferent metrics : (1) bias, (2) root mean squared error
(RMSE), and (3) anomaly time series correlation coeffi-
cient, or anomaly R. All statistics were computed from the
ensemble mean estimates and were area-weighted in model
tile space such that larger tiles had a greater impact on the
computed metric. Bias was computed as the model (i.e.,
OL or DA) minus the truth. The anomaly R value was com-
puted by first determining the climatological seasonal cycle
over the course of the simulation period for both the mod-
eled ensemble mean and the synthetic truth. Next, the
anomaly time series were computed by subtracting the cli-
matological seasonal cycle from the corresponding original
time series prior to the computation of the anomaly R val-
ues. Statistically significant differences in anomaly R val-
ues between the OL and DA experiments were determined
using the Hotelling-Williams test [Steiger, 1980; Forman
et al., 2012].

3. Results and Discussion

3.1. Open-Loop Results

[27] In order to better understand the DA results, it is
worthwhile to first examine the OL results. As mentioned
previously, the OL simulations utilized GLDAS forcing
whereas the truth utilized MERRA forcing. A bias correc-
tion procedure was implemented in order to ensure the total
amount of incoming mass (precipitation) and energy (short-
wave and longwave downwelling radiation) over the 9 year
study period in each of the six subbasins was identical (see
section 2.4.2).

[28] One significant difference between the GLDAS and
MERRA forcing is illustrated in Figure 4. MERRA con-
tains more precipitation than GLDAS during the peak
(summer) rainfall season whereas GLDAS contains more
precipitation than MERRA during the winter, which often
falls as snow. More precipitation during the peak summer
season, in general, equates to stronger, more intense rainfall
events. This behavior is further enhanced by the fact that
the spatial and temporal resolution of MERRA is much
finer than that of GLDAS, which generally results in the
presence of more intense rainfall events in MERRA

whereas the same rainfall event is effectively ‘‘smoothed
out’’ in space and time in GLDAS. Collectively, these two
attributes result in a more rapid hydrologic response when
MERRA forcing is utilized, which produces a larger frac-
tion of runoff relative to infiltration.

[29] Figure 5 illustrates this behavior. The left-most col-
umn shows the computed bias between the simulated (i.e.,
GLDAS-based) and true (i.e., MERRA-based) output. Sim-
ilarly, the middle and right-most column shows the RMSE
and anomaly R, respectively. Each row of subplots corre-
sponds to a particular hydrologic state or flux. Each indi-
vidual subplot contains the results from the OL simulations
along with the DA simulations as a function of assimilated
retrieval discretization, ARD. The different lines within
each individual subplot correspond to different values of
the horizontal model error correlation length, �. Focusing
on just the computed bias for only the OL simulations, the
difference in hydrologic response associated with the
GLDAS and MERRA forcings is readily apparent. The
more intense precipitation events in MERRA, particularly
during the summer, result in more runoff in the truth rela-
tive to OL, which ultimately produces a negative bias in
runoff in the OL simulations. Less runoff associated with
less intense rainfall implies more opportunity for water
retention within the basin, which is in agreement with the
positive TWS bias in the OL simulations. This is further
shown in the subsurface water bias, which clearly high-
lights the behavior that less intense rainfall events in
GLDAS allow for a significantly larger fraction of the
water to infiltrate into the subsurface, which yields a posi-
tive bias in the subsurface relative to the truth.

[30] Based on Figure 4, the OL SWE bias in Figure 5
appears counterintuitive. However, upon closer inspection
of the spatial distribution of the precipitation forcing in
MERRA versus GLDAS, these results are justifiable. An
examination of the spatial distribution of the precipitation
in each subbasin over the 9 year study period (results not
shown) indicates a significantly larger amount of snow
accumulation along the southwestern border of the MRB.
Probably due to its higher spatial resolution, MERRA gen-
erates more snowfall in the mountainous regions of the
Liard and Peace subbasins where, in general, SWE is great-
est. Even though the total amount of snowfall, in general, is
less in the truth than in the OL across the MRB as a whole,
the enhanced accumulation of SWE in the areas where
SWE is greatest results in a snowpack that takes longer to
completely melt and ablate. This extension of the snow sea-
son, so to speak, in the subbasins where SWE is the greatest
yields the negative bias for SWE as shown in Figure 5.

[31] The final outcome worth highlighting in the OL sim-
ulations is related to evaporative flux. Increased infiltration
associated with GLDAS forcing, in general, increases the
amount of surface and root zone soil moisture available for
use in evaporative processes. The positive bias in the sub-
surface of the OL simulations is clearly reflected in the pos-
itive bias of the evaporation. Additionally, there are small
variations in the OL results depending on the horizontal
model error correlation length, �, used during prognostic
and forcing variable perturbation. This is not only seen in
the evaporation results, but also in the other states and
fluxes displayed in Figure 5. The differences associated
with different � values are small relative to the differences
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Figure 4. Monthly averaged, climatological precipitation
in the MRB for the current study period.
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between utilization of the MERRA versus GLDAS forcing
and are relatively insignificant. These small differences
arise in part due to the finite ensemble size, I, used in this
application. In the limit as I ! 1, the differences in OL
results associated with different � values should approach
zero.

3.2. Data Assimilation Results

3.2.1. Terrestrial Water Storage
[32] In this section, we proceed with the investigation of

the impacts on DA results of the assumed horizontal model

error correlation length, �, and the assimilated retrieval dis-
cretization, ARD. Starting with TWS shown along the top
row of Figure 5, we see significant improvements as the
assimilated retrieval discretization increases (i.e., as finer-
scale TWS retrievals are assimilated). The bias is reduced
to near-zero when the synthetic retrievals are assimilated at
the scale of two or more subbasins. The RMSE decreases
monotonically as the spatial scale of the assimilated retriev-
als decreases from an OL value greater than 40 mm to a
value less than 20 mm at ARD¼ 6. This reduction in uncer-
tainty occurs even though the error variance in the
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Figure 5. Subbasin area-weighted statistics for the Mackenzie basin. The different lines represent dif-
ferent horizontal model error correlation lengths as shown by the legend in the top-left subplot. Black
diamonds represent statistically significant anomaly R improvements (relative to the OL simulation) for
a majority of the six subbasins that comprise the Mackenzie as a whole.
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assimilated retrievals increases as the retrieval scale is
reduced (Table 1). Note that this is not a trivial result in the
presence of model nonlinearities. In the presence of model
nonlinearities, the aggregation of 1� � 1� retrievals to the
subbasin (�105 km2) scale rather than the basin (�106

km2) scale allows the DA framework to capture more infor-
mation. (As discussed earlier in the context of equation (1),
this result considers the change in the retrieval error var-
iance with the spatial aggregation.)

[33] As the horizontal model error correlation length is
increased from �¼ 1� to �¼ 4�, we see additional
improvements, but these improvements are small compared
to the improvements with decreasing the retrieval scale.
Collectively, continual improvements in bias and RMSE of
the posterior TWS estimate are witnessed as the scale of
the assimilated TWS retrievals approaches the finest subba-
sin scale tested here. In this study, it is assumed that the
minimum spatial scale that can be sufficiently resolved by
GRACE in the MRB is approximately 200,000 km2 (see
Table 1), which occurs when spatial error correlations
between subbasins are insignificant. Note that this estimate
is not universal and depends on basin shape, basin topogra-
phy, proximity to ablating glaciers, proximity to oceans,
proximity to regions with postglacial rebound, the half-
width of the Gaussian smoothing kernel used as part of the
TWS retrieval algorithm, and a host of other factors.

[34] Improvements to the anomaly R are also greater, in
general, as the retrieval scale is decreased and � is
increased. In other words, the best TWS results are
achieved when assimilating TWS retrievals for the six sub-
basins rather than for a TWS retrieval of the basin as a
whole. Anomaly R increased from R � 0.45 for the OL
simulations to R� 0.70 at ARD¼ 6 when using �� 2�. The
black diamonds in the anomaly R subplot denote improve-
ments within a majority of the MRB subbasins that are stat-
istically different from the OL at the 5% level based on the
Hotelling-Williams significance test [Steiger, 1980; For-
man et al., 2012].

[35] In general, the greatest gains in TWS estimation via
assimilation of gravimetric retrievals are achieved when
applying the smallest retrieval scale that can be sufficiently
resolved by the retrievals (i.e., the smallest spatial scale at
which the retrievals are spatially uncorrelated). A second-
ary gain is achieved when applying �� 2�. Further, the ma-
jority of these gains are statistically significant. It is
worthwhile noting here that TWS assimilation can result in
statistically significant degradation in some of the subba-
sins for some of the hydrologic fluxes (e.g., runoff dis-
cussed in section 3.2.3), but that the black diamonds in
Figure 5 represent statistically significant improvements
within a majority of the MRB subbasins.
3.2.2. Snow Water Equivalent and Subsurface Water
Storage

[36] As shown in the second row of Figure 5, assimila-
tion of TWS retrievals has the tendency to remove a small
amount of SWE. The negative bias in SWE is made more
negative (albeit by only 2 mm or less) as a result of the DA
procedure. This is generally due to the removal of SWE at
or near peak accumulation during the snow season [Forman
et al., 2012]. However, even though the SWE bias becomes
slightly worse, the RMSE is improved by �20% for
ARD� 2 and values of �� 2�. That is, even though the

bias is degraded via the DA procedure, the RMSE is
reduced, which is indicative of increased confidence in the
posterior estimate. In addition, the anomaly R is signifi-
cantly improved from the OL values of R � 0.64 to
R� 0.70 for ARD� 2 and �� 2�.

[37] The greatest improvements from DA were wit-
nessed in the subsurface water storage (i.e., soil moisture
and groundwater) relative to the surface state variables and
surface fluxes. The third row of Figure 5 shows the bias is
reduced by half from �10 mm in the OL simulations to �5
mm in the DA simulations when ARD� 2. The bias
remains relatively unchanged for ARD¼ 1 even though the
RMSE is dramatically reduced from �30 mm in the OL
simulations to �15 mm or less at all values of ARD in the
DA simulations. This is evidence that the DA procedure is
improving the subsurface storage estimate no matter the
scale of the assimilated retrievals or the horizontal model
error correlation length used, but that the greatest gains are
achieved in both bias and RMSE when ARD� 2. In much
the same manner as witnessed with the RMSE results, the
anomaly R results are improved significantly at all values
of ARD. These results, in conjunction with the SWE results,
suggest the DA procedure simultaneously improves surface
and subsurface state estimates, thereby implicitly adding
vertical resolution to the TWS retrievals as part of the DA
procedure. Additional discussion regarding the partitioning
of the TWS retrievals between the SWE and subsurface
components is found in section 3.2.4.
3.2.3. Runoff and Evaporation

[38] In addition to improvements in hydrologic state esti-
mation, it is useful to analyze the effects of the state
updates on hydrologic flux estimation. We emphasize here
that the fluxes are not directly updated in the DA frame-
work, but do change as a result of the state vector update.
The fourth row of Figure 5 shows the OL and DA results
for runoff. As previously discussed in section 3.1, differen-
ces in precipitation timing and intensity between MERRA
and GLDAS yield differences in the amount of runoff asso-
ciated with different hydrologic responses. The DA update
further exacerbates the negative bias in the runoff for two
reasons: (1) SWE is removed, on average, across the MRB,
which means less SWE is available to produce snow melt
runoff, and (2) subsurface water is removed, much of which
is in the form of soil moisture, which results in more infil-
tration and hence less runoff during hydrologic partitioning
at the land surface.

[39] Runoff bias becomes more negative with increasing
ARD. RMSE, on the other hand, remains unchanged as a
function of ARD (except for �¼ 1) and can even can be
degraded (albeit by only 5%) relative to the OL. This
behavior is, in large part, due to the degradation of runoff
bias that is ultimately reflected in the RMSE. The anomaly
R, in general, improves with increasing ARD, but only a
handful of occurrences are statistically different at the 5%
level. Even though the impact of TWS assimilation on
hydrologic runoff estimation is relatively small compared
to the effects on hydrologic state estimation, it is worth-
while highlighting the result that the best performance from
the DA routine on runoff estimation occurred when � was
smallest, which is contrary to the state estimation results
where, in general, the best performance occurred when �
was greatest.
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[40] As mentioned in section 3.1, the positive bias in the
subsurface water results in a positive bias in evaporation.
As shown in the bottom row of Figure 5, assimilation of
TWS retrievals had little or no effect on the evaporation
bias and was relatively insensitive to the horizontal model
error correlation length. RMSE, on the other hand, was
reduced by a small amount regardless of the spatial scale of
the assimilated retrievals. The anomaly R values were
improved via assimilation and were significantly different
from the OL results in most instances. However, as with
the RMSE results, the anomaly R results were relatively
insensitive to ARD. In an analogous manner as found with
runoff, the best performing DA results occurred when �
was smallest (i.e., �¼ 1�) as opposed to the state estimates
that were mostly improved when � was largest (i.e.,
�¼ 4�). The exact reason for this behavior remains elusive,
but appears to be consistent for both of the fluxes investi-
gated in this study. It is possible that the energy-limited re-
gime found in much of the Mackenzie River basin exerts
less control over changes in evaporative flux resulting from
TWS assimilation than for a more water-limited regime
such as that found in semiarid areas.
3.2.4. Analysis Increments

[41] An evaluation of the analysis increments (i.e.,
xþ� � x�� ) provides useful information about the behavior of
the TWS assimilation routine [Forman et al., 2012]. It
allows for mass to be tracked during exchanges between
relevant components of the hydrologic cycle as well as for
any water imbalance generated during the filter update to
be investigated and better understood. In this study, the
temporally averaged, basin-averaged analysis increment for
the entire MRB, IMRB, was computed as

IMRB ¼
X
�2T

X
b2B

wb � hxþb;� i � hx�b;� i
� �

; ð2Þ

where hxþb;� i is the ensemble mean of the posterior estimate
(of SWE or subsurface water) for a given subbasin b and
month � , hx�b;�i is the same but for the prior estimate, wb is
a factor for area-weighted averaging ð

PB
b¼1 wb ¼ 1:0Þ, and

T is the total number of months in each simulation. A posi-
tive value for IMRB suggests mass has been added to the
system as a whole whereas a negative value for IMRB sug-
gests mass has been removed.

[42] Figure 6 shows the results of the time-averaged, ba-
sin-averaged analysis increments for the SWE and subsur-
face components in the different DA experiments as a
function of the horizontal model error correlation length, �,
and the spatial scale of the assimilated retrievals, ARD. Fig-
ure 6a shows the results as computed using equation (2).
Figure 6b shows similar results but computed with an abso-
lute value operator applied to the analysis increments inside
the parentheses. As is shown in Figure 6a, the cumulative
increments vary considerably as a function of ARD but are
relatively insensitive to �. As ARD increases, SWE is
increasingly removed during the analysis update. Corre-
spondingly, on a relative scale, less mass is removed from
the subsurface. In other words, as the spatial scale of the
assimilated TWS decreases, more mass is removed from
the snowpack near peak accumulation while less mass is
removed from the soil moisture and/or groundwater stores
during spring runoff and ablation, which has the overall

effect of dampening the runoff response during the melt
season. Further, mass is collectively being removed from
the system during the analysis as indicated by the negative
values of the cumulative increments for all values of � and
ARD. The systematic removal of mass from the hydrologic
system introduces a small water imbalance in the MRB,
which was also witnessed in Forman et al. [2012]. The
water imbalance, however, is smallest when assimilating
TWS retrievals at the smallest spatial scale.

[43] Figure 6b provides additional evidence on the
behavior of the update routine. When investigating the cu-
mulative absolute analysis increments, two features are
apparent : (1) the cumulative absolute value of the subsur-
face increments is significantly greater than the cumulative
absolute value of the SWE increments for a given �, and
(2) the cumulative absolute value increases monotonically
with increasing �. Even though the magnitude of the cumu-
lative increments for the subsurface illustrated in Figure 6a,
particularly at ARD� 4, are smaller than those for SWE,
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Figure 6b suggests that on average, for a given time step,
the magnitude of the analysis increment is much greater for
the subsurface water than for SWE and that a larger portion
of the analysis increment is being applied to subsurface
water. This seems reasonable given that the subsurface con-
tains more water (i.e., a larger fraction of the TWS) than
what is found in SWE and, in part, helps explain why TWS
assimilation in the MRB generated relatively small changes
in the posterior SWE estimate [Forman et al., 2012].

[44] The increase in the cumulative absolute increments
with increasing horizontal model error correlation length
suggests that the multiplicative effect of the gain matrix
(i.e., weighting factor based on the uncertainty in the prior
states and the predicted retrievals) times the innovation
(i.e., difference between the TWS retrieval and the pre-
dicted TWS estimate) increases as � increases. This implies
that an increase in the horizontal length scale of the errors
(perturbations) applied to the prognostic and forcing varia-
bles increases the background error covariance while the
retrieval error covariance, R, remains unchanged, which
ultimately produces a larger magnitude in the analysis in-
crement. Hence, the result is more temporal variability in
the analysis increments for both the subsurface water and
SWE as � is increased. This is evident in Figures 5b and 5e
for �	 2� and suggests that an underestimation of the hori-
zontal error correlation length results in an underestimation
of the background error covariance and hence an underesti-
mation of the gain. This behavior quickly dissipates for
�> 2� (results for �> 4� not shown). In addition, these
results suggest TWS assimilation is relatively insensitive to
the overestimation of �, but that underestimation of the
background error covariance (via improper selection of �)
adversely affects the analysis update and limits the amount
of information exchange from the TWS retrievals into the
conditioned model estimate.
3.2.5. Horizontal Downscaling

[45] The ability of the DA framework to effectively
downscale the assimilated TWS retrievals to scales below
the subbasin scale was investigated using spatial (pattern)
correlations of TWS anomalies. TWS anomalies were first
computed in fine-scale tile space (�103 km2) for each
model tile in the MRB. This was done separately for the
truth simulation each OL simulation, and each DA simula-
tion. The skill of each DA and OL simulation was then
defined as the anomaly pattern correlation (as a function of
time) relative to the truth. The anomaly pattern correlation
was computed as the spatial correlation between the true
anomaly and the OL or DA anomaly at each moment in
time, from which the time-averaged anomaly pattern corre-
lation could then be computed for the entire study period.

[46] Figure 7a shows the temporal average of the differ-
ences between DA skill and OL skill for each of the hori-
zontal model error correlation lengths and assimilated
retrieval scales. In general, the improvement in pattern cor-
relation increased with increasing assimilated retrieval dis-
cretization, ARD. This is reasonable since a reduction in
assimilated retrieval scale implicitly contains additional in-
formation regarding the spatial distribution of TWS across
the domain. There is some evidence that the DA procedure
effectively adds horizontal resolution to the retrievals.
Namely, the DA results highlighted in Figure 7 outperform
those of the OL for almost every combination of � and

ARD tested. However, when compared against the OL, the
changes are not statistically significant when using a Fisher
Z transform with a 5% confidence interval. That is, most of
the fine-scale horizontal resolution in TWS is the result of
applying the prognostic model in tile space and does not
result from the application of analysis increments as a func-
tion of � or as a function of ARD.

[47] Figure 7b provides additional evidence as to the
benefits of assimilating TWS retrievals at decreasing spa-
tial scales. The anomaly RMSE shown is computed in a
similar manner as that of the anomaly pattern correlation
except that RMSE is computed rather than correlation coef-
ficient. The reduction in TWS anomaly pattern RMSE is
essentially monotonic such that increasing ARD results in
decreasing anomaly pattern RMSE. These findings further
suggest assimilation of TWS retrievals at the finest subba-
sin scale results in the greatest amount of improvement rel-
ative to the OL.

4. Conclusions

[48] A synthetic twin experiment was conducted during
which synthetic retrievals of satellite-derived TWS in the
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Figure 7. Temporally averaged differences (DA versus
Truth minus OL versus Truth) in (a) TWS anomaly pattern
correlation and (b) TWS anomaly pattern RMSE for the
MRB for different assimilated retrieval scales and different
horizontal model error correlation length scales.
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MRB were assimilated into the NASA Catchment model.
In addition to the ‘‘true’’ and OL simulations, a total of 16
DA experiments were conducted. The experimental matrix
was based on the permutation of different values of assimi-
lated retrieval discretization (ARD¼ {1,2,4,6}) in conjunc-
tion with different horizontal model error correlation
lengths of the perturbations applied to model prognostic
and forcing variables (�¼ {1�, 2�, 3�, 4�}). As the spatial
scale of the assimilated TWS retrieval decreases, the corre-
sponding retrieval error for each assimilated retrieval
increases. As the � scale increased, the background (sam-
ple) error covariance used in the gain enabled horizontally
distributed updates across larger regions of space via the
horizontal propagation of error information.

[49] Referring back to the science questions in section 1,
we can say the following regarding the spatial scale of the
assimilated TWS retrieval. The efficacy of the DA routine,
in general, appears most enhanced when TWS retrievals
are assimilated at the smallest spatial scale at which they
can be reasonably resolved (that is, the smallest scale at
which the observations are spatially uncorrelated). The
smallest spatial scale that can be reasonably resolved will,
of course, depend on geographic location. Theoretically,
basins closer to the poles could be resolved at smaller
scales due to the increased number of satellite overpasses
associated with a polar-orbiting platform such as GRACE.
However, other factors must also be considered such as
proximity to oceans and the possibility of gravimetric sig-
nals in outlying areas ‘‘leaking’’ into gravimetric estimates
related to terrestrial hydrology processes in a specific area
of interest [Tapley et al., 2004; Houborg et al., 2012].
Additionally, due to the application of a Gaussian smooth-
ing kernel during GRACE TWS product generation
[Chambers, 2006; Swenson and Wahr, 2006], the scale of
the TWS retrieval that can be reasonably resolved is pre-
sumably smaller for basins that are relatively circular in
shape as opposed to those that are thin and elongated.

[50] As for the science question regarding horizontal
error correlation scale, the results for the basin used in this
study suggest that state estimation was clearly enhanced
using a � where the e-folding length was long enough to
encompass the basin of interest as well as some of the
neighboring regions outside of the basin of interest.
Namely, state estimation was most improved at
3� 	�	 4�, but this effect was secondary relative to
changes in retrieval scale. Flux estimation using the DA
procedure, however, yielded the best results when � � 1�.
However, the state variable improvements had a deleterious
(and nonlinear) effect on the diagnostic fluxes. In short, the
DA routine attempts to correct for improper model physics
in the runoff routing scheme by retaining more water
within the subsurface of the basin. The resulting change in
nonlinear hydrologic response and dynamic range of
model-estimated TWS better matches that of the synthetic
TWS retrievals. This also agrees with the findings of For-
man et al. [2012] where ‘‘real-world’’ GRACE retrievals
were assimilated in the Mackenzie basin. By retaining
more mass in the subsurface, the DA routine exacerbated
the negative bias in runoff (via increased subsurface stor-
age) and also exacerbated the positive bias in evaporation
(via increased subsurface storage and hence increased
evaporative water availability). Given that the improve-

ments to the state estimates were much more significant at
large values of � compared to the relatively small improve-
ments in flux estimation at small values of �, it is prefera-
ble to focus on the state estimates. Hence, the greatest
potential in improving model performance via assimilation
of TWS was witnessed when using a � that fully encom-
passed the spatial scale of the assimilated TWS retrievals.
These finding corroborate the expectation that the best state
estimation results occur when 3� 	�	 4�, which most
accurately represents the ‘‘true’’ design error of �o � 3�.

[51] In terms of effectively downscaling the TWS
retrievals in space by adding vertical resolution to the
GRACE TWS retrievals as part of the assimilation proce-
dure, it is clear that the DA routine can simultaneously
improve the surface and subsurface state estimates through
the assimilation of TWS. The enhanced vertical resolution
in the updated (conditioned) estimate arises from the fine-
scale model’s ability to better resolve TWS into surface
and subsurface components. The DA routine appears capa-
ble of effectively adding horizontal resolution to the TWS
retrievals via application of the fine-scale prognostic
model, too, but horizontal downscaling is not significant at
a level of �	 0.05. That is, most of the downscaling capa-
bility is associated with the merger of the fine-scale, prog-
nostic model with the TWS retrievals and has less to do
with the value of �, which essentially only impacts the
analysis increments. Overall, the DA procedure added
value to the model estimate by reducing model uncertainty
while implicitly adding utility to the coarse-scale, column-
integrated TWS retrievals via vertical downscaling. The
DA procedure does not, however, add a significant amount
of information to the model estimates at horizontal resolu-
tions below the subbasin scale (�105 km2).

[52] Lastly, it is important to point out some of the limi-
tations of this study. This study only focused on a northern
latitude basin where snow is a major contributor to the
hydrologic cycle. What is not apparent from these results is
how such a study might perform where snowfall is insignif-
icant. An additional limitation is that these results are
model-specific and may not transfer to assimilation systems
that use other land surface models. Extending this synthetic
study to other climatic regions and/or incorporating other
land surface models and assimilation systems should be
considered in future studies related to the assimilation of
TWS. Despite these limitations, our findings have impor-
tant implications for land data assimilation systems that
extract information from satellite-based TWS retrievals
such as the gravity recovery and climate experiment
(GRACE) for the purpose of improving regional and
continental-scale freshwater resource characterization.
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